Klärtechnische Berechnung Kläranlage Marktoberdorf Ist-Zustand

1. Grunddaten

Schmutzwasserabfluss im Jahresmittel: 37,77 l/s

135,96 m³/h

Fremdwasseranfall: QF,aM = 19,98 l/s

= 71,92 m³/h

Trockenwetterabfluss im Jahresmittel: QT,aM = 57,74 l/s

207,88 m³/h

4.989,00 m³/d

Divisor für die Tagesspitze: xQmax = 15,03 h/d

QT,h,max = QF,aM + $\frac{24 * QS,aM}{xQmax}$

Tagesspitze bei Trockenwetter im Jahresmittel: QT,h,max = 80,28 l/s

289,00 m³/h

Entwässerung im Mischsystem

Faktor für Mischwasserzufluss: fS,QM = 8,41

QM = fS,QM * QS,aM + QF,aM I/s

Mischwasserabfluss: QM = 337,78 l/s

1.216,00 m³/h

1.2 Abwasserverschmutzung

Die stündlichen Mengen sind mit den Stundenmitteln für Schmutzwasser und Fremdwasser berechnet.

Abwasserverschmutzung	
	kg/d
CSB-Kommunal	5.394,00
TSo-Kommunal	3.146,50
TKN-Kommunal	394,30
P-Kommunal	67,80

1.3 Interne Rückbelastung

Stundenmittel für interne Rückbelastung:

8,0 h/d

Berechnen der Trübwassermengen

5.394,00	kg/d
0,50	kgTS/kgCSB
2.697,00	kgTS/d
10	kg/m³
269,70	m³/d
50	kg/m³
	0,50 2.697,00 10 269,70

Trübwassermenge: 215,76 m³/d

Konzentrationen und Frachten

	mg/l	kg/d
BSB5-Rückbelastung	1.000,00	288,11
CSB-Rückbelastung	2.000,00	431,52
TKN-Rückbelastung	200,00	43,15
NO3-Rückbelastung	0,00	0,00
P-Gesamt-Rückbelastung	50,00	10,79

1.4 Gewähltes Verfahren

Berechnungsverfahren

- Berechnung der Biologie nach DWA-A131 (2016)
- Bemessung auf der Basis des CSB
- Berechnung der Nachklärung nach DWA-A131

Reinigungsverfahren

- Belebungsverfahren
- vorgeschaltet/intermittierend Denitrifikation
- Umwälzung und Belüftung

Gewählte Bauform

- Horizontal durchströmtes Nachklärbecken
- Separates Belebungsbecken

2. Biologische Stufe

2.1 Belebungsbecken

Belebungsanlage mit vorgeschalteter Denitrifikation

Abwasserverschmutzung			
	g/(E*d)	kg/d	mg/l
CSB-Kommunal	120,00	5.394,00	1.081,18
CSB-Rückbelastung		431,52	2.000,00
CSB-Gesamt		5.825,52	1.119,27
TSo-Kommunal	70,00	3.146,50	630,69
TSo-Gesamt		3.146,50	604,54
TKN-Kommunal	8,77	394,30	79,03
TKN-Rückbelastung		43,15	200,00
TKN-Gesamt		437,45	84,05
P-Kommunal	1,51	67,80	13,59
P-Rückbelastung		10,79	50,00
P-Gesamt		78,59	15,10

Qd,konz: 5.204,76 m³/d

Konstanten

Anteil anorganische Stoffe an den abfiltrierbaren Stoffen:

fB	=	0,20
fA	=	0,30
3 (0,15 - 0,	25):	
fCSB	=	0,20
b	=	0,17
Υ	=	0,67
fS	=	0,05
YCSB,dos	s =	0,00
	fB fA 3 (0,15 - 0, fCSB b Y fS	fB = fA = B (0,15 - 0,25): fCSB = b = Y =

Konzentrationen der Fraktionen der Abwasserinhaltsstoffe im Zulauf zur Biologie

Partikulärer CSB:	XCSB,ZB =	773,81 mg/l
Gelöster CSB:	SCSB,ZB =	345,45 mg/l
Gelöster inerter CSB:	SCSB,inert,ZB =	55,96 mg/l
partikulärer inerter CSB:	XCSB,inert,ZB =	232,14 mg/l
abbaubarer CSB in der homogenisierten Probe:	CCSB,abb,ZB =	831,16 mg/l
leicht abbaubarer CSB in der homogen. Probe:	CCSB,la,ZB =	166,23 mg/l
abfiltrierbare anorganische Stoffe:	Xanorg,TS,ZB =	120,91 mg/l

Aufstockung des CSB durch externen Kohlenstoff: CCSB,dos = 0,00 mg/l

Dimensionierung der Belebung

Reaktionstemperatur: $T = 12,00 \,^{\circ}C$ Prozessfaktor: PF = 1,91

Der Prozessfaktor wird über die Ober- und Untergrenzen nach Seite 30 des Arbeitsblattes DWA-A 131 interpoliert.

Erforderliches aerobes Schlammalter:

$$tTS$$
,aerob,Bem = $PF*3,4*1,103^{(15-T)}$ = 8,71 d

Temperaturfaktor FT:

$$FT = 1,072^{(T-15)} = 0,81$$

Stickstoffbilanz			
		kg/d	mg/l
TKN (Zulauf)	CTKN,ZB	437,45	84,05
Nitrat-N (Zulauf)	SNO3,ZB	0,00	0,00
N-Inkorporation	XorgN,BM	84,42	16,22
(Biomasse)			
N-Einlagerung	XorgN,iner	46,40	8,92
	t		
Ammonium-N (Ablauf)	SNH4-	26,02	5,00
	N,AN		
organisch-N (Ablauf)	CorgN,AN	10,41	2,00
Nitrat-N (Ablauf)	SNO3,AN	26,02	5,00
Zu denitrifizierendes Nitrat	SNO3,D	244,18	46,92

SNO3,D = CTKN,ZB - SorgN,AN - SNH4-N,AN - XorgN,BM - XorgN,inert - SNO3,AN [mg/l]

Gesamtschlammalter:

$$tTS = \frac{tTSa}{1-VD/VBB} = 10,17 d$$

Trockensubstanzkonzentration:	TSBB	=	3,72 kg/m ³
Rezirkulationsverhältnis gesamt:	RF	=	21,64
Rezirkulationsverhältnis intern:	RZ	=	20,91

Geforderte Ablaufwerte

Nitrat-N im Ablauf:	5,00 mg/l
Ammonium-N im Ablauf:	5,00 mg/l
Organisch-N im Ablauf:	2,00 mg/l

erforderliches Denitrifikationsverhältnis:

Verhältnis Nitrifikationsvolumen zu Gesamtvolumen:

Anteil des vorgeschalteten Denitrifikationsvolumens:

VD/VBB = 0,143

VN/V = 0,86

VD/VBB,vorg = 0,33

Anteil des intermittierenden Denitrifikationsvolumens:

VD/VBB,int = -0.19

Ergebnis der Bemessung

Überschussschlammproduktion aus Kohlenstoffelimination

[mg/l]

$$XCSB,BM = \frac{CCSB,abb,ZB * Y + CCSB,dos * YCSB,dos}{1 + b * tTS * FT} [mg/l]$$

CSB der Biomasse: XCSB,BM = 231,70 mg/l

$$XCSB,inert,BM = 0.2 * XCSB,BM * tTS * b * FT [mg/l]$$

inerter Anteil des CSB in der Biomasse: XCSB,inert,BM = 65,03 mg/l

auf den Abwasserzufluss bezogene CSB-Konzentration des Überschussschlammes:

XCSB,ÜS = 528,88mg/l

Tägliche Schlammproduktion aus der Kohlenstoffelimination:

ÜSd,C =

Qd,konz * (XCSB,inert,ZB /1,33 + (XCSB,BM + XCSB,inert,BM)/(0,92*1,42) + fB * XTS,ZB)
1000

[kg/d]

USd,C = 2.719,98kg/d

$$\ddot{\mathsf{US}},\mathsf{P} = \frac{\mathsf{Qd},\mathsf{konz} * (3 * \mathsf{XPbioP} + 6.8 * \mathsf{XPFaelIFe} + 5.3 * \mathsf{XPFaelIAI})}{1000}$$

[kg/d]

US,P = 300,94kg/d

USd = USd,C + US,P [kg/d]

USd = 3.020,92 kg/d

Sauerstoffbedarf für den Kohlenstoffabbau:

OVC = CCSB,abb,ZB + CCSB,dos - XCSB,BM - XCSB,inert,BM [mg/l]

OVC = 534,42 mg/l

Anteil des Sauerstoffbedarfs aus leicht abbaubarem CSB und extern dosiertem CSB für kombiniert Denitrifikation:

Gesamter Sauerstoffverbrauch in der Denitrifikationszone für kombiniert Denitrifikation:

 $OVC_D = 135,47 \text{ mg/l}$

Vergleich Sauerstoffzehrung zu Sauerstoffangebot:

$$x = \frac{OVc,D}{2,86 * SNO3,D} = 1,01$$

Erforderliches Gesamtvolumen: Vmin =8.258,72 m³

Das bestehenden Belebungsbeckenvolumen VBB = 5.600 m³

liegt deutlich unter dem rechnerisch erforderlichen Mindestvolumen unter Ansatz des rechnerischen TS_{BB}. Das bestehende Belebungsbecken ist rechnerisch um etwa ein Drittel zu klein dimensioniert.

 $\Delta VBB = 2.658,72 \text{ m}^3$

2.1.2 Säurekapazität

Säurekapazität im Zulauf:	KSo =	8,00 mmol/l
Ammonium-N im Zulauf (0,50 * TKN):	NH4-No=	42,02 mg/l
Ammonium-N im Ablauf:	NH4-Ne=	5,00 mg/l
Nitrat-N im Ablauf:	NO3-Ne=	5,00 mg/l
Eisenkonzentration:	Fe3	22,96 mg/l
Gefällter Phosphor:	Po-Pe	8,50 mg/l

KSe = KSo - [0,07*(NH4No - NH4Ne + NO3Ne) + 0,06*Fe3 + 0,04*Fe2 + 0,11*Al3 - 0,03*(Po-Pe)]

Theoretische Säurekapazität im Ablauf: KSe = 4,29

mmol/l

Der von der ATV vorgegebene Minimalwert der verbleibenden Säurekapazität im Ablauf der Belebungsanlage von 1,5 mmol/l wird nicht unterschritten.

2.1.3 Sauerstoffbedarf / Kombinierte Denitrifikation

Die Berechnung des Sauerstoffbedarfs erfolgt über eine Bilanzierung nach DWA-M 229-1.

Lastfall 0 = Bemessung

Lastfall 1 = Mittlerer Luftbedarf

Lastfall 2 = Luftbedarf für die Bemessung des Belüftungssystems

Lastfall 3 = Minimaler Luftbedarf

Stickstoffbilanz

Lastfall	CTKN,ZB	SNO3,ZB	SNH4-N,AN	XorgN,BM	XorgN,inert,BM	
	mg/l	mg/l	mg/l	mg/l	mg/l	
0	84,05	0,00	5,00	16,22	8,92	
1	84,05	0,00	5,00	13,82	9,12	
2	84,05	0,00	5,00	10,61	9,40	
3	84,05	0,00	5,00	11,75	9,30	

Parameter Biologie

Erforderliches aerobes Schlammalter:

tTS, aerob = PF * 3,4* 1,103^(15-T) [d]

Prozessfaktor: PF
Reaktionstemperatur: T [°C]

Denitrifikationsverhältnis VD/VBBmax= 1 - tTS,aerob / tTS

SNO3,D1: Zu denitrifizierendes Nitrat, Ablaufanforderungen SNO3,D2: denitrifiziertes Nitrat, aufgrund der gewählten

Denitrifikationskapazität

SNO3,D3: denitrifiziertes Nitrat, tatsächlich

VD/V2 : Denitrifikationsverhältnis, gewählt

SNO3,D1 = CTKN,ZB + SNO3,ZB - SorgN,AN - SNH4-N,AN - SNO3,AN - XorgN,BM [mg/l]

SNO3,D2 = Denitrifikationskapazität * CCSB,ZB [mg/l]

SNO3,D3 = CTKN,ZB + SNO3,ZB - SorgN,AN - SNH4-N,AN - SNO3,AN,tatsächlich - XorgN,BM [mg/l]

Nitratkonzentration im Ablauf SNO3,AN, gewähltes Denitrifikationsverhältnis SNO3,AN = CTKN,ZB – SorgN,AN - SNH4-N,AN - XorgN,BM - SNO3,D3

Lastfall	Belastung	TW	TSBB	üsd	tTS	PF	tTS,aerob	tTS,aerob2
	%	Ç	kg/m³	kg/dCSB	d		d	d
0	100,0	12,00	3,72	3020,9	10,17	1,91	8,71	
1	80,0	12,00	3,72	2329,5	13,19	1,91	8,71	10,55
2	100,0	20,00	3,72	2765,6	11,11	1,91	3,98	8,89
3	80,0	15,00	3,72	2254,0	13,63	1,91	6,49	10,90

Lastfall	VD/VBBmax	VD/V2	SNO3,Dist	SNO3,AN	Х
	-	-	mg/l	mg/l	
0	0,143	0,143	46,92	5,00	1,01
1	0,339	0,200	57,77	0,00	1,18
2	0,642	0,200	61,05	0,00	1,17
3	0,524	0,200	59,89	0,00	1,17

Sauerstoffbedarf

Sauerstoffverbrauch für die Kohlenstoffelimination

OVC = CCSB,abb,ZB + CCSB,dos - XCSB,BM - XCSB,inert,BM [mg/l]

$$OVd,C = \frac{Qd,konz * OVC}{1000}$$
 [kgO2/d]

$$XCSB,BM = \frac{(CCSB,abb,ZB * Y + CCSB,dos * YCSB,Dos)}{1 + b * tTS * FT} [mg/l]$$

Sauerstoffverbrauch für die Nitrifikation

$$OVd,N = \frac{Qd^{*}4,3^{*}(SNO3,D - SNO3,ZB + SNO3,AN)}{1000}$$
 [kgO2/d]

SNO3 Konzentration des Nitratstickstoffsmg/l in der filtrierten Probe als N

Sauerstoffverbrauch für die Denitrifikation

$$OVd,D = \frac{Qd^*2,86^*SNO3,D}{1000}$$
 [kgO2/d]

Sauerstoffbedarf für die verschiedenen Lastfälle OVh

$$OVh = \frac{(OVd,C - OVd,D) * fC + OVd,N * fN}{24}$$
 [kgO2/h]

Für die Lastfälle 2 und 3 gilt:

Lastfall 2: fC, fN aus Tabelle 8, A131

Lastfall 3, minimaler Sauerstoffverbrauch

OVhmin =
$$\frac{\text{OVd,C}}{(3.92 / (tTS * 1.072^{(TW-15)}) + 1.66) * 24}$$
 [kgO2/h]

Lastfall 3, alternativ bei signifikantem Nachtzufluss

$$OVh = \frac{(OVd,C - OVd,D) * fC,min + OVd,N * fN,min}{24}$$
 [kgO2/h]

Erhöhungsfaktor für intermittierende Belüftung:

$$f,int = \frac{1}{1 - (VD/VBB,inter - VD/VBB,vorg)}$$

Lastfall	XCSB,BM	XCSB,inert,BM	ÜSC	OVC,la	OVCD	OVC
	mg/l	mg/l	kg/d	mg/l	mg/l	mg/l
0	231,70	65,03	2.719,98	54,86	135,47	534,42
1	197,48	71,88	2.088,73	54,86	165,23	561,80
2	151,59	81,06	2.464,65	54,86	174,60	598,51
3	167,88	77,80	2.013,26	54,86	171,28	585,48

Lastfall	OVd,C	OVd,N	OVd,D	OVh	fC	fN	fint
	kgO2/d	kgO2/d	kgO2/d	kgO2/h			
0	2.781,53	1.161,89	698,36	135,21	1,00	1,00	1,00
1	2.339,23	1.034,38	687,98	111,90	1,00	1,00	1,00
2	3.115,10	1.366,32	908,76	229,52	1,19	2,11	1,00
3	2.437,82	1.072,28	713,19	116,54	1,00	1,00	1,00
3			OVhmin =	52,15			

Sauerstoffbedarf OVh, und notwendige Sauerstoffzufuhr SOTR

SOTR =
$$\frac{fd * \&St * CS,20 * fST,ST}{\alpha * fS,\alpha * (fd * \&\alpha * Cs,T * (Patm/1.013) - Cx) * \Theta^{(TW-20)}} * OVh * fint [kgO2/h]$$

ßSt		Salzfal	ktor Saue	erstoffs	ättigungswert	in Reinwasse	er
ßα		Salzfal	ktor Saue	erstoffs	ättigungswert	unter Betrieb	sbedingungen
fSt,ST		Salzfal	ktor Belü	ftungsk	coeffizient in F	Reinwasser	
fS,α		Salzfal	ktor Belü	ftungsk	oeffizient unt	er Betriebsbe	dingungen
cS,20		Sauers	stoffsättig	jung be	ei 20°C	[mg/l]	
cS,T		Sauers	stoffsättig	jung be	ei Bemessung	stemperatur	[mg/l]
СХ		Betriek	Sauersi	offkonz	zentrationen	[mg/l]	
Θ		Tempe	raturfakt	or, 1,02	24		
Salzfaktor	ßSt	ßα	fSt,ST	fS,α			

1.00	1,00	1.00	1,00
.,	.,	.,	.,

Lastfall	tL	α	cS,T	сх	SOTR
	h/d		mg/l	mg/l	kgO2/h
0	28,49	0,85	10,78	1,50	202,63
1	27,12	0,85	10,78	1,50	167,70
2	27,12	0,65	9,10	1,50	453,28
3	27,12	0,85	10,09	1,50	175,57

Notwendige Luftmenge

$$QL,N = \frac{1000 * SOTR}{SSOTR * hD}$$
 [mN3/h]

Umrechnung von Normbedingungen auf Ansaugbedingungen Atmosphärischer Druck

patm =
$$(\frac{288 - 0,0065 * hgeo}{288})^{5.255} *1013,25 = 930,11 [hPa]$$

Ansaugdruck

p1,abs = patm -
$$\Delta$$
p1

Sättigungsdampfdruck

$$ps = 6,112 * EXP((17,62*TL1)/(243,12+TL1))$$
 [hPa]

Ansaugvolumenstrom Q1

$$Q1 = \frac{(TN+TL1)*pN*QL,N}{TN*(p1,abs - \phi*ps)}$$
 [m3/h]

Q1	Ansaugvolumenstrom	m3/h
TN	Normtemperatur	273,15 k
TL,1	Ansaugtemperatur, Standardwert	30°C
pΝ	Normluftdruck	1.013,25 hPa (1hPa = 1 mbar)
ф	relative Luftfeuchte	0,3

Lastfall	SSOTR	QL,N
	gO2/(mN3*m)	mN3/h
0	20,00	2.597,85
1	20,00	2.149,99
2	20,00	5.811,29
3	20,00	2.250,91

Luftmenge für die Bemessung der Belüftungseinrichtung, Lastfall 2

Berechnung für verschiedene Lastfälle gemäß ATV A131

Lastfall		0	1	2	3
Temperatur	°C	12,00	12,00	20,00	15,00
Trockensubstanzkonzentrati on	kg/m³	3,72	3,72	3,72	3,72
TKN-Konzentration im Zulauf CTKN,ZB	mg/l	84,05	84,05	84,05	84,05
Nitrat-N im Zulauf SNO3,ZB	mg/l	0,00	0,00	0,00	0,00
Ammonium-N im Ablauf SNH4-N,AN	mg/l	5,00	5,00	5,00	5,00
Organisch-N im Ablauf SorgN,AN	mg/l	2,00	2,00	2,00	2,00
N-Inkorporation in der Biomasse XorgN,BM	mg/l	16,22	13,82	10,61	11,75
Zu denitrifizierendes Nitrat SNO3,D	mg/l	46,92	49,11	52,04	51,00
Zu denitrifizierendes Nitrat SNO3,Dist	mg/l	46,92	57,77	61,05	59,89
Nitrat-N im Ablauf SNO3,AN	mg/l	5,00	0,00	0,00	0,00
Gesamtschlammalter tTS	d	10,17	13,19	11,11	13,63
Stoßfaktor fC		1,00	1,00	1,19	1,00
Stoßfaktor fN		1,00	1,00	2,11	1,00
VD/VBB max		0,143	0,339	0,642	0,524
VD/VBB gewählt		0,143	0,200	0,200	0,200
Belüftungszeit tL	h/d	28,49	27,12	27,12	27,12
OVd,C	kgO2/d	2.781,53	2.339,23	3.115,10	2.437,82
OVd,N	kgO2/d	1.161,89	1.034,38	1.366,32	1.072,28
OVd,D	kgO2/d	698,36	687,98	908,76	713,19
OVh	kgO2/h	135,21	111,90	229,52	116,54
сх	mg/l	1,50	1,50	1,50	1,50
α		0,85	0,85	0,65	0,85
Sauerstoffzufuhr SOTR	kgO2/h	202,63	167,70	453,28	175,57
QL	m³/h	2.597,85	2.149,99	5.811,29	2.250,91

2.2 Phosphatelimination

Ermittlung der zu fällenden Phosphatfracht

		mg/l	kg/d
P-Konzentration Zulauf	CP,Z	13,59	67,80
P-Konzentration Zulauf Belebung	CP,ZB	15,10	78,59
Biologisch gebundener Phosphor	XP,BM	5,60	29,13
Biologische P-Elimination	XP,BioP	0,00	0,00
P-Konzentration (Ablauf)	CP,AN	1,00	5,20

Zu fällender Phosphor

 $XP,F\ddot{a}II = CP,ZB - CP,AN - XP,BM - XP,BioP$ [mg/I]

Zulaufende Fracht: 78,59 kg/d
In die Biomasse eingebauter Phosphor XP,BM: 0,005 kg/kg
Ablaufende P-Fracht (1,0 mg/l): 5,20 kg/d
Zu fällende P-Fracht (Auslegung): 44,26 kg/d

Erforderliche tägliche Fällmittelmenge

Fällmittel: FeCl3

Molverhältnis: b = 1,50 molFe/molP

Verhältnis der Molekulargewichte: Fe/P = 1,80

Notwendige Eisenmenge (Auslegung): PO4-P * Fe/P * b = 119,49 kg/d

Tägliche Dosiermenge (40 % Eisenchloridlösung):872,28 kg/dDichte der Lösung:r=1,50 kg/lErforderliche Eisensalzmenge (Auslegung):581,52 l/d

Überschussschlammanfall aufgrund der Phosphatelimination

Spezifischer Überschussschlammanfall: ÜSp = 0,052 kgTS/kgCSB

Täglicher Überschussschlammanfall: 300,94 kg/d
Anteil der TS am Belebtschlamm: TSp = 3,71 kg/m³

Gesamte Überschussschlammproduktion:

USd = USd,C + USd,P = 3.020,92 kg/d

2.3 Überschussschlamm

Täglicher Überschussschlammanfall (Biologie):	308,41 m³/d
Täglicher Überschussschlammanfall (Phosphatfällung):	34,12 m³/d
Täglicher Überschussschlammanfall (gesamt):	342,53 m³/d
Feststoffkonzentration:	8,82 kg/m³